direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C9×C42⋊2C2, C42⋊5C18, C4⋊C4⋊5C18, (C4×C36)⋊3C2, (C4×C12).6C6, C22⋊C4.2C18, C23.5(C2×C18), C18.46(C4○D4), (C2×C36).66C22, (C2×C18).81C23, (C22×C18).3C22, C22.16(C22×C18), (C9×C4⋊C4)⋊14C2, C2.9(C9×C4○D4), (C3×C4⋊C4).16C6, C6.46(C3×C4○D4), C3.(C3×C42⋊2C2), (C2×C12).85(C2×C6), (C2×C4).11(C2×C18), (C9×C22⋊C4).5C2, (C22×C6).8(C2×C6), (C3×C22⋊C4).10C6, (C2×C6).86(C22×C6), (C3×C42⋊2C2).2C3, SmallGroup(288,176)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C9×C42⋊2C2
G = < a,b,c,d | a9=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=bc2, dcd=b2c-1 >
Subgroups: 126 in 90 conjugacy classes, 60 normal (15 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C23, C9, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C18, C18, C2×C12, C22×C6, C42⋊2C2, C36, C2×C18, C2×C18, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×C36, C22×C18, C3×C42⋊2C2, C4×C36, C9×C22⋊C4, C9×C4⋊C4, C9×C42⋊2C2
Quotients: C1, C2, C3, C22, C6, C23, C9, C2×C6, C4○D4, C18, C22×C6, C42⋊2C2, C2×C18, C3×C4○D4, C22×C18, C3×C42⋊2C2, C9×C4○D4, C9×C42⋊2C2
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 119 47 110)(2 120 48 111)(3 121 49 112)(4 122 50 113)(5 123 51 114)(6 124 52 115)(7 125 53 116)(8 126 54 117)(9 118 46 109)(10 79 22 88)(11 80 23 89)(12 81 24 90)(13 73 25 82)(14 74 26 83)(15 75 27 84)(16 76 19 85)(17 77 20 86)(18 78 21 87)(28 106 44 93)(29 107 45 94)(30 108 37 95)(31 100 38 96)(32 101 39 97)(33 102 40 98)(34 103 41 99)(35 104 42 91)(36 105 43 92)(55 140 68 127)(56 141 69 128)(57 142 70 129)(58 143 71 130)(59 144 72 131)(60 136 64 132)(61 137 65 133)(62 138 66 134)(63 139 67 135)
(1 57 28 74)(2 58 29 75)(3 59 30 76)(4 60 31 77)(5 61 32 78)(6 62 33 79)(7 63 34 80)(8 55 35 81)(9 56 36 73)(10 115 134 98)(11 116 135 99)(12 117 127 91)(13 109 128 92)(14 110 129 93)(15 111 130 94)(16 112 131 95)(17 113 132 96)(18 114 133 97)(19 121 144 108)(20 122 136 100)(21 123 137 101)(22 124 138 102)(23 125 139 103)(24 126 140 104)(25 118 141 105)(26 119 142 106)(27 120 143 107)(37 85 49 72)(38 86 50 64)(39 87 51 65)(40 88 52 66)(41 89 53 67)(42 90 54 68)(43 82 46 69)(44 83 47 70)(45 84 48 71)
(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 19)(17 20)(18 21)(55 90)(56 82)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 89)(64 77)(65 78)(66 79)(67 80)(68 81)(69 73)(70 74)(71 75)(72 76)(91 117)(92 109)(93 110)(94 111)(95 112)(96 113)(97 114)(98 115)(99 116)(100 122)(101 123)(102 124)(103 125)(104 126)(105 118)(106 119)(107 120)(108 121)(127 140)(128 141)(129 142)(130 143)(131 144)(132 136)(133 137)(134 138)(135 139)
G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,119,47,110)(2,120,48,111)(3,121,49,112)(4,122,50,113)(5,123,51,114)(6,124,52,115)(7,125,53,116)(8,126,54,117)(9,118,46,109)(10,79,22,88)(11,80,23,89)(12,81,24,90)(13,73,25,82)(14,74,26,83)(15,75,27,84)(16,76,19,85)(17,77,20,86)(18,78,21,87)(28,106,44,93)(29,107,45,94)(30,108,37,95)(31,100,38,96)(32,101,39,97)(33,102,40,98)(34,103,41,99)(35,104,42,91)(36,105,43,92)(55,140,68,127)(56,141,69,128)(57,142,70,129)(58,143,71,130)(59,144,72,131)(60,136,64,132)(61,137,65,133)(62,138,66,134)(63,139,67,135), (1,57,28,74)(2,58,29,75)(3,59,30,76)(4,60,31,77)(5,61,32,78)(6,62,33,79)(7,63,34,80)(8,55,35,81)(9,56,36,73)(10,115,134,98)(11,116,135,99)(12,117,127,91)(13,109,128,92)(14,110,129,93)(15,111,130,94)(16,112,131,95)(17,113,132,96)(18,114,133,97)(19,121,144,108)(20,122,136,100)(21,123,137,101)(22,124,138,102)(23,125,139,103)(24,126,140,104)(25,118,141,105)(26,119,142,106)(27,120,143,107)(37,85,49,72)(38,86,50,64)(39,87,51,65)(40,88,52,66)(41,89,53,67)(42,90,54,68)(43,82,46,69)(44,83,47,70)(45,84,48,71), (10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,19)(17,20)(18,21)(55,90)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,77)(65,78)(66,79)(67,80)(68,81)(69,73)(70,74)(71,75)(72,76)(91,117)(92,109)(93,110)(94,111)(95,112)(96,113)(97,114)(98,115)(99,116)(100,122)(101,123)(102,124)(103,125)(104,126)(105,118)(106,119)(107,120)(108,121)(127,140)(128,141)(129,142)(130,143)(131,144)(132,136)(133,137)(134,138)(135,139)>;
G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,119,47,110)(2,120,48,111)(3,121,49,112)(4,122,50,113)(5,123,51,114)(6,124,52,115)(7,125,53,116)(8,126,54,117)(9,118,46,109)(10,79,22,88)(11,80,23,89)(12,81,24,90)(13,73,25,82)(14,74,26,83)(15,75,27,84)(16,76,19,85)(17,77,20,86)(18,78,21,87)(28,106,44,93)(29,107,45,94)(30,108,37,95)(31,100,38,96)(32,101,39,97)(33,102,40,98)(34,103,41,99)(35,104,42,91)(36,105,43,92)(55,140,68,127)(56,141,69,128)(57,142,70,129)(58,143,71,130)(59,144,72,131)(60,136,64,132)(61,137,65,133)(62,138,66,134)(63,139,67,135), (1,57,28,74)(2,58,29,75)(3,59,30,76)(4,60,31,77)(5,61,32,78)(6,62,33,79)(7,63,34,80)(8,55,35,81)(9,56,36,73)(10,115,134,98)(11,116,135,99)(12,117,127,91)(13,109,128,92)(14,110,129,93)(15,111,130,94)(16,112,131,95)(17,113,132,96)(18,114,133,97)(19,121,144,108)(20,122,136,100)(21,123,137,101)(22,124,138,102)(23,125,139,103)(24,126,140,104)(25,118,141,105)(26,119,142,106)(27,120,143,107)(37,85,49,72)(38,86,50,64)(39,87,51,65)(40,88,52,66)(41,89,53,67)(42,90,54,68)(43,82,46,69)(44,83,47,70)(45,84,48,71), (10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,19)(17,20)(18,21)(55,90)(56,82)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,89)(64,77)(65,78)(66,79)(67,80)(68,81)(69,73)(70,74)(71,75)(72,76)(91,117)(92,109)(93,110)(94,111)(95,112)(96,113)(97,114)(98,115)(99,116)(100,122)(101,123)(102,124)(103,125)(104,126)(105,118)(106,119)(107,120)(108,121)(127,140)(128,141)(129,142)(130,143)(131,144)(132,136)(133,137)(134,138)(135,139) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,119,47,110),(2,120,48,111),(3,121,49,112),(4,122,50,113),(5,123,51,114),(6,124,52,115),(7,125,53,116),(8,126,54,117),(9,118,46,109),(10,79,22,88),(11,80,23,89),(12,81,24,90),(13,73,25,82),(14,74,26,83),(15,75,27,84),(16,76,19,85),(17,77,20,86),(18,78,21,87),(28,106,44,93),(29,107,45,94),(30,108,37,95),(31,100,38,96),(32,101,39,97),(33,102,40,98),(34,103,41,99),(35,104,42,91),(36,105,43,92),(55,140,68,127),(56,141,69,128),(57,142,70,129),(58,143,71,130),(59,144,72,131),(60,136,64,132),(61,137,65,133),(62,138,66,134),(63,139,67,135)], [(1,57,28,74),(2,58,29,75),(3,59,30,76),(4,60,31,77),(5,61,32,78),(6,62,33,79),(7,63,34,80),(8,55,35,81),(9,56,36,73),(10,115,134,98),(11,116,135,99),(12,117,127,91),(13,109,128,92),(14,110,129,93),(15,111,130,94),(16,112,131,95),(17,113,132,96),(18,114,133,97),(19,121,144,108),(20,122,136,100),(21,123,137,101),(22,124,138,102),(23,125,139,103),(24,126,140,104),(25,118,141,105),(26,119,142,106),(27,120,143,107),(37,85,49,72),(38,86,50,64),(39,87,51,65),(40,88,52,66),(41,89,53,67),(42,90,54,68),(43,82,46,69),(44,83,47,70),(45,84,48,71)], [(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,19),(17,20),(18,21),(55,90),(56,82),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,89),(64,77),(65,78),(66,79),(67,80),(68,81),(69,73),(70,74),(71,75),(72,76),(91,117),(92,109),(93,110),(94,111),(95,112),(96,113),(97,114),(98,115),(99,116),(100,122),(101,123),(102,124),(103,125),(104,126),(105,118),(106,119),(107,120),(108,121),(127,140),(128,141),(129,142),(130,143),(131,144),(132,136),(133,137),(134,138),(135,139)]])
126 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | ··· | 4F | 4G | 4H | 4I | 6A | ··· | 6F | 6G | 6H | 9A | ··· | 9F | 12A | ··· | 12L | 12M | ··· | 12R | 18A | ··· | 18R | 18S | ··· | 18X | 36A | ··· | 36AJ | 36AK | ··· | 36BB |
| order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | ··· | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 9 | ··· | 9 | 12 | ··· | 12 | 12 | ··· | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 36 | ··· | 36 | 36 | ··· | 36 |
| size | 1 | 1 | 1 | 1 | 4 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 1 | ··· | 1 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
126 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
| type | + | + | + | + | |||||||||||
| image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C9 | C18 | C18 | C18 | C4○D4 | C3×C4○D4 | C9×C4○D4 |
| kernel | C9×C42⋊2C2 | C4×C36 | C9×C22⋊C4 | C9×C4⋊C4 | C3×C42⋊2C2 | C4×C12 | C3×C22⋊C4 | C3×C4⋊C4 | C42⋊2C2 | C42 | C22⋊C4 | C4⋊C4 | C18 | C6 | C2 |
| # reps | 1 | 1 | 3 | 3 | 2 | 2 | 6 | 6 | 6 | 6 | 18 | 18 | 6 | 12 | 36 |
Matrix representation of C9×C42⋊2C2 ►in GL4(𝔽37) generated by
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 33 | 0 |
| 0 | 0 | 0 | 33 |
| 6 | 0 | 0 | 0 |
| 0 | 6 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 36 | 0 |
| 21 | 35 | 0 | 0 |
| 35 | 16 | 0 | 0 |
| 0 | 0 | 31 | 0 |
| 0 | 0 | 0 | 31 |
| 1 | 0 | 0 | 0 |
| 21 | 36 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 36 |
G:=sub<GL(4,GF(37))| [1,0,0,0,0,1,0,0,0,0,33,0,0,0,0,33],[6,0,0,0,0,6,0,0,0,0,0,36,0,0,1,0],[21,35,0,0,35,16,0,0,0,0,31,0,0,0,0,31],[1,21,0,0,0,36,0,0,0,0,1,0,0,0,0,36] >;
C9×C42⋊2C2 in GAP, Magma, Sage, TeX
C_9\times C_4^2\rtimes_2C_2
% in TeX
G:=Group("C9xC4^2:2C2"); // GroupNames label
G:=SmallGroup(288,176);
// by ID
G=gap.SmallGroup(288,176);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,365,512,1094,142,360]);
// Polycyclic
G:=Group<a,b,c,d|a^9=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b*c^2,d*c*d=b^2*c^-1>;
// generators/relations